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Abslraci A few lwodimensional appmximant-approximant and approximanlquasicrystai 
lattice transfomations are studied. These lattice transfomations are gwemed by lhree 
mechanisms: translational slip, rotational slip and irrational twinning. n e s e  operations 
can generate an infinite number o i  appmximants, most of them having commensu- 
rale s t ~ c t u r e .  The irralional twinning generates either the onedimensional or two- 
dimensional aperiodic lattices depending on the orientation of lhe irrational twin plane 
with respect to the periodic lattice. Experimental evidence in favour of such lattice trans- 
formations is supplied by high-resolution elwtron microscopy imaging in Iwo approximanl 
structures. 

1. Introduction 

The decagonal phase is a quasictystal built by periodic stacking of two-dimensional 
(ZD) aperiodic atomic layers [I]; it is often described by the Penrose tiling (PT) pattern 
[2], an array displayed by three (prolate rhombus, convex and concave pentagons) 
tiling units. Most of the decagonal quasicrystals are metastable at room temperature, 
e.g. in the AI-Mn [l], Al-Mn-Ni [3] and AI-Cu-Fe-Cr (41 alloy systems. Only a 
few exceptions are stable either at high temperature, for example in the AI-Cu-CO 
case [5-7, or at room temperature in the AI-Pd-Mn alloys [SI. The metastable 
and high-temperature stable quasicrystals transform to their approximant phases after 
slow cooling or certain heat treatment. Their relationship with the approximant 
phases have been studied by many authors. Most often, this relationship is discussed 
within the cut and projection scheme [9], starting from a 5D hyperspace adapted 
to the decagonal and related approximant phases [lo]. The main feature that was 
pointed out is that both structure Pipes, approximant or quasiclystal, are constructed 
by the same types of ZD tiling units when viewed along the tenfold or pseudo tenfold 
directions [6, 7, 111. The case of icosahedral phase approximants is dealt with in 
papers quoted in [lo]. These phases, which are 3~ aperiodic compounds, are beyond 
the scope of the present paper. 

A single-crystal x-ray structure analysis of decagonal d-AI,,Cu,,Co,, [5] was per- 
formed recently using the 5~ approach by Steurer and Kuo [12]. The 3D decagonal 
structure consists of two distinct quasiperiodic layers but related by a tenfold screw 
axis. They are stacked periodically one upon the other. A pentagonal network linking 
the atoms in these layers can be drawn. It has an edge length of 2.9 A. We shall refer 

0953-8984/92i347025+16$04.50 0 1992 IOP Publishing Ltd 7025 



1026 S S Knng and J M Duboh 

to it as a B-type layer, as in another paper [13] specifically devoted to this subject. 
A very similar B-type layer is found at height y = 1/4 in the AI1,Fe, [14] lattice, 
although the perfect tenfold rotational symmetry is broken. Another type of layer, 
hereafter called A-type as in [13], is observed in Ale Mn,,Ni, [15]: it is characterized 
by a pentagonal network with edge length 7 x 2.9 1 where i is the golden mean. 

We have shown in [13] that these two types of layers, as well as the layers 
related to each of them by a screw axis obeying the tenfold symmetry, may be used to 
construct all quasicrystalline structures as well as the approximant ones. The principle 
consists of recovering the 3D space dimensionality by stacking along the tenfold axis 
(or pseudo tenfold axis) the ZD A and B types of layers according to selection rules 
defined by stereo-topological constraints. This principle is not different from the one 
which rules polytypes, e.g. FCC versus HCP lattices. 

In this paper we consider only the transformations that may occur within one given 
structure, either quasicrystalline or approximant. The stacking sequence is therefore 
defined and is not supposed to change during transformation. Thus we may restrict 
ourselves to the crystallographic transformations that occur inside a given layer, e.g. 
the A-type network 

For the sake of simplicity of the drawings, we shall focus attention on one single 
layer, assuming that the layers above and below it undergo the same crystallographic 
transformation. 

The structure transformation may involve shear, slip or twinning mechanisms 
which are often assigned to the incorporation of point defects such as vacancies and 
interstitials in connected coordination polyhedra. In the case of crystals, many ZD 
lattice transformations related to these defects have been discovered by Hyde er a1 
116). A pictorial model for solid-state amorphization based on a disordered partition 
of interstitial atoms in octahedral sites of the HCP lattice (the so-called chemical 
twinning introduced by Andersson and Hyde in 1974 [17]) has been demonstrated by 
Dubois [18]. 

The formation of approximant crystalline structure from quasicrystalline phase is 
always related to the action of phason strains. It has been shown by Zhang and 
Kuo [19] that, introducing phasons in two orthogonal directions in the quasiperiodic 
plane perpendicular to the periodic tenfold axis, the Penrose pattern progressively 
becomes a large periodic lattice. The corresponding simulated electron diffraction 
patterns agree fairly well with experiments. In another approach, Dong and Dubois 
[20] have tackled the transformations by twinning operations and proposed a ZD 
geometrical model for the decagonal phase. This model uses the tenfold twinning 
operation to multiply the atomic clusters with tenfold symmetry. The basic structurc 
units, from which the observed units can be constructed, have been found to be the 
Robinson triangles. An altemative approach to the approximant and quasicrystalline 
structures was introduced in a previous paper [13] where the structure description 
has been lifted to atomic scale by identifying the cluster units decoration with the 
help of a known crystalline structure. In this paper, attention will be focused on the 
mechanism which causes the formation of either periodic or aperiodic arrays. After 
explanations of several approximant structures in section 3, three examples of the 
lattice transformations will be given in section 4. The first one concerns the linear 
slip operation between two periodic lattices without change in unit cell area during 
transformation. The second example reveals a new rotational slip (rotated around 
an axis of pseudo tenfold symmmetry or tenfold symmetry). Irrational twinning (the 
twin plane is characterized by an irrational cut of the ZD periodic lattice) involved in 
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the lattice transformation between periodic and 1D-aperiodic or 2D-aperiodic lattices 
will be introduced in the last case. 

All phases on which we report below are looked at in relation only to the lattice 
perpendicular to the tenfold or pseudo tenfold directions tiled with units having edge 
length d w 4.6 8, Our discussion will deal with clystallographic transformations 
relating the tilings to each other. At present, computer simulation work is in progress 
to understand such transformations in terms of phase transititions, using effective pair 
potential data. 

2. Experimental details 

In order to substantiate the lattice transformations proposed in the following, a high- 
resolution electron microscopy study was performed on real approximant crystals. 

Three alloys of nominal compositions as indicated below were prepared by in- 
duction melting of pure elements under helium atmosphere. They were drawn in 
the liquid state into cylindrical moulds and cooled to room temperature a t  a rate of 
about 5 x lo2 K s-’. 

A--A180.75Mn1 3.75 Ni.5. 5 (at’%) 
alloy B-A1,7Cu,Felo,5Crl,,5Si, (at.%) 
alloy GAI,,,,Cu,,,,Fe,Cr,Si, (at.%) 
The alloy A was rapidly cooled by the melt spinning method on a copper wheel 

rotating at a tangential speed of the cooling surface of V = 12 m s-’. The as-cast 
cylindrical samples of the alloys B and C were compressed at room temperature up 
to fracture stress U = 555 MPa and at 800 OC under argon atmosphere till the strain 
reached e = 0.2. These samples will be called samples A, B and C respectively. The 
structure analysis was realized by using the transmission electron microscope (TEM) 
JEOL200CX on powder samples prepared by crushing bits of the alloys. 

3. Structure of several important orthorhombic approximants 

The structure details of the approximant phases reported so far are insufficiently 
specified, especially for those with large unit cells. Thus, in the following subsections, 
we will present three types of large approximant structure which are closely related 
with the decagonal phase. 

3.1. (4,Zp)-type approximant (C phase and ‘p phase) 
?ivo simple patterns that can be displayed by the convex pentagon and prolate rhom- 
bus tiling units are schematized in figure 1. These patterns reproduce the atomic 
decoration of the layers lying on the mirror plane (y = 1/4 or 3/4) of known 
crystal structure, namely the C phase [21] of composition Al,l,5Cu7~5Fe,lCr17Si3 
(figure l(a)) and the ‘p phase [lSJ of composition Al,,Mnl,Ni, (figure l(b)). They 
are both orthorhombic structures each with unit cell packed by four convex (v) pen- 
tagons and two prolate (p) rhombuses. According to the ZD classification scheme 
proposed previously [13], they belong to (4,2,)-type approximants. The aluminium 
atoms at pentagon vertices form a sublattice with edge length d, 4.6 A inside the 
orthorhombic unit cells. This is the essential reason why our attention is only on the 
sublattice scale for the lattice transformation in section 4. We will come back to these 
simple lattices when discussing the lattice transformation. 
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F@re 1. B o  simple anays packed by the mnva pentagon and prolale rhombus tiling 
unils. (a) 'me orthorhombic C phase (0-AI alom, .-transition metals) and (b)  the 
orthorhombic 9 phase with lhe AllsFer monoclinic cell laid out in the middle of the 
+phase lattice. 

3.2 (16,4,6,)-rype approximanr (0, phase) 

Recently van Tendeloo er ai [3] discovered a decagonal phase in a rapidly cooled 
sample of composition Al,,Mn,,Ni,. In our sample A, the selected area electron 
diffraction pattern (SAED) taken along the tenfold direction looks vety like the one 
shown by van Rndeloo er ai [3] (figure 2(a)). However, a careful analysis of the 
H E M  image proves that the structure is microcrystalline rather than quasicrystallinc 
(figure 2(c)). As indicated by arrows on top of the HREM image, some of the rows 
are periodically arranged. This image is actually a lattice roughly constructed by the 
?d,-type rhombus (see pattern schematized in figure 2(c)). In some areas these 
rhombuses arrange themselves into a B-face centred orthorhombic lattice with cell 
parameters a = 24.0 & b = 12.4 8, and c = 32.7 8, This orthorhombic phase 
(hereafter the 0, phase) has already been found in AI-Cu-Fe-Cr alloys (after Dong 
el ai [7], this phase has an mm2 point group). Referring to another HREM image 
taken in the same area as figure 2(c) but with different defocused contrast (see 
enlarged image shown in figure 2(b)), a sublattice with edge length d, = 4.6 8, of 
the oblate rhombus can be proposed. This pattern is drawn according to the fact that 
the (4,2,)-type approximant (the 'p phase) which is found in the same alloy system is 
packed by the v-type pentagon with edge length d,. Thus, if one supposes that each 
black point of the HREM image corresponds to a v-typz pentagon, then the pattcm 
obtained is unique as shown in figure 2(b). This large oblate rhombus is packed by 
eight convex (v) pentagons, two concave (c) pentagons and two prolate rhombuses 
(figure 2(b)). Since the orthorhombic unit cell of the 0, phase consists of two large 
oblate rhombuses (figure 2(c)), it is noted as the (16,4,6,)-type approximant. 

A sublattice of a distorted prolate rhombus is also schematized in figure 2(b). 
This distorted prolate rhombus has two different edge lengths. It can be produced by 
a slip mechanism applied to a lattice built by the oblate rhombuses (see section 4.4). 

It is possible to deduce the space group of the 0, phase by combining the 2~ 
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Figure 2. (0) Selected-arca clertmn-dilfraction pallcm. (h )  and ( c )  I I R K M  images of the 
A l ~ o . r s N i i . 5 M n t s  7 5  alloy. 7he enlarged HREM image (h) is taken in the same area as 
(c) wilh different defocused contrasl. 

space group deduced from the pattern and the crystallographic symmetry in the third 
dimension perpendicular to this ZD pattern. We suppose that the mirror plane a t  
y = 1/4 and 3/4 of the C phase (see figure 1 and [21] for more details on the 
C-phase structure) is the same as in the 0,-phase case. Then the space group of the 
0, phase is obtained as Bbm2,. This space group belongs to the point group mm2 
reported in [J. We have applied the same model to decipher the atomic structure of 
the new ,A-Cu-FeCrSi orthorhombic compound, in agreement with single crystal 
x-ray diffraction data [Zl]. 

3.3. (10,2,4,)-type approximant (0 phase) 

Several approximant phases have been found in the AI-Cu-Fe-Cr alloys. Most 
of them have orthorhombic structures, for example the 0, phase [4] in alloy 
AI,,Cu,,Fe,,Cr, (the optimal composition for this 0, phase as detected by micro- 
probe electron microscopy is AI,,Cu,Fe,,,,Cr,,,,) and the C phase [21] in alloy 
AI,,,,Cu,,,Fe,,Cr,,Si,. In the present investigation, a new orthorhombic phase was 
discovered in the sample B-AI,,Cu,Fe,,,,Cr,,,,Si,. This phase (hereafter the 0 
phase) has a primitive structure with cell parameters a = 23.6 & b = 12.3 8, and 
c = 20.0 8, The pseudo tenfold (010) SAED pattern and its corresponding HREM 
images are given in figure 3. From the high-resolution image (see figure 3(c) and its 
enlarged image in figure 3(b)), this R phase is a (10,2,4,) approximant constructed 
from ten convex pentagons, two concave pentagons and four prolate rhombuses. By 
using the same space group determination method as for the (16,4,6,) 0, phase 
(see previous section), the space group can be deduced as P2mc. 

Note that the pseudo tenfold ring observed in the HREM image corresponds to  
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Figure 3. (a )  Selected-area electron-diffraction paltern, ( b )  and (c) HREM images taken 
along the pseudo tenfold direction in the AIG,CusFelo.sCr,o.sSiJ alloy. The top image 
of (b)  is an enlarged image of (c) whereas the battom image of (b) is taken in the Same 
area as (c) with different defacused mnlmd. 

the pentagon ring laid out in the bottom of figure 3(b). This HREM contrast can be 
changed to a white-dot-type contrast without the presence of pseudo tenfold rings 
(see figure 2(c) for example). The centred p i n t  of the star-like unit (bottom image 
of figure 3(b ) )  corresponds to an intense dot. The pattern laid out by connecting the 
intense points may then be different from the one obtained by connecting pseudo 
tenfold rings (this point has been illustrated in [7]). 

4. Tilings and lattice transformations 

4.1. Tiling condition and notations 

The tiling condition that we will introduce here is quite similar to matching rules [22]. 
However, in our case, the tiling units are not the oblate and prolate rhombuses as 
usually used in the literature but are convex pentagon, concave pentagon and prolate 
rhombus labelled as v unit, c unit and p unit, respectively. 

From the lattices schematized in figures 1 ,2  and 3, we can see that the v unit is the 
principal tiling unit. It is always present in first-neighbour positions of the other tiling 
units i.e. the c unit and p unit. This means that the first-neighbour tiling configuration 
for each unit can then be characterized by the number of v-type pentagons located 
in its first-neighbour shell. We summarize the possible tiling configurations for each 
basic tiling element (i.e. v, c and p units) in table 1. The notation given in the central 
column of table 1, for example 4p, denotes the number of v-type units (here four) 
placed in the first neighbour position of the p unit which has one atom inside. 

As can be seen in figure 1, convex pentagons have two different atomic configu- 
rations. One has only one atom lying at the centre of the pentagon and the other has 
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five atoms near the edges of the pentagon. These will be denoted v1 and v, respec- 
tively (table 1). In fact, the c unit and p unit also have different atomic configurations. 
Depending on the w e  of v unit i.e. v1 or v,, placed in the first-neighbour position, 
the c unit can be distinguished as c, (no atom inside the unit) or c2 (two atoms inside 
the unit). The p unit yields only a change in atomic position, with one atom being on 
the top and another on the bottom of the unit (table 1, see two 2pl configurations 
for example). Thus, each independent pattern has a dual packing (e.g. 3c, and 3c2). 
The same kind of tiling units, for example v units, cannot be connected to each other 
without using an intermediate tiling unit such as a p unit or a c unit, due to the 
existence of stercological constraints [13]: two v1 pentagons together would produce 
a too-loosely-packed array whereas two-edge connected v, units involve unphysically 
short pair distances. This tiling condition will be used to determine which lattice 
transformation avoids the existence of stereological constraints. 

Table 1. Basic tiling elemens and fint-neighbour tiling condition. All first-neighbour 
tiling pattems have a dual packing, %RVO examples are given in the table, Zpl and 3c-3c2. 
The nolation denotes the number of atoms in a tiling unit and the number of v-type 
pentagons in the first-neighbour position (e.g. 3v5 has three v-type pentagons surmunding 
a v-type pentagon which has five atoms). .. . - 
Tiling 
element 
Prolate 
rhombu: 

P 

- 
Concave 
pentagoi 

C 

- 
Convex 
pentagoi 

V 

- 

'irst neighbour tiling 
onditions 

. . .  . && .. .. 
. .. 4pL@ . .. . .  .. 

hree dimensional 
iling unit 

i--T--- I 
I 7 . 1  

I I ' 1. 
7 I 1 4  I 
I . / * I  

I I 

I I - -  -0 
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4.2. Translational slip as a lattice transformalion operalion in a ( 4 , 2 $ y p e  approximant 

lb illustrate how the linear slip operation intervenes as a mechanism of structure 
transformation, we select here as an example a simple transformation between two 
close approximant arrays: the C and 'p phases, The coexistence of these two stmc- 
tures has heen observed by Daulton et a1 [23] in AI-Mn alloys. However, the atomic 
decorations of the isostructural phases C and 'p in the AI,,Mn,, alloys may be differ- 
ent from the ones observed in the AI,l~,(Cu-Fe-Cr-Si),,~5 and A18,(Ni-Mn),, alloys 
respectively, due to the difference in compositions. As a matter of fact, these two 
lattices are not transformed from each other by the twinning operation as described 
by Daulton et a1 [U] but rather by the slip operation. 

The sli operation can be illustrated in the sublattice scale with edge length 

pentagon chains (denoted 1 and 2 in figure 1) along the direction [loo] for a distance 
d, = L = a/? and an angle IS0, where a is the cell parameter of the C phase 
and 7 = (A+ 1)/2. The orthorhombic C unit cell (figure l (a) )  is distorted to a 
monoclinic unit cell (figure l(b)) and vice versa. 

4.3. Rotational and screw rolalional slips 

I n  the previous example we pointed out how translational slip may rearrange pentag- 
onal tilings. The present section is devoted to another type of rearrangement. Instead 
of gliding between two pentagon chains, the gliding is now governed by the rotation 
of three pentagons located inside a ring of nine pentagons and is restricted around 
a local rotational axis defined by the pseudo tenfold axis. The angular increment is 
taken as nr/5 to satisfy the tiling condition given in table 1, where n is integer. This 
kind of gliding is called rotational slip (for more details on this operation see Hyde 
et al [24]). 

Dble 2 gives all the possible configurations for clockwise rotational mode from 
angle 0' to 180'. This configuration of 0' is considered as the initial ring configu- 
ration. For n = odd integer, the configurations (e.g. 36' mode) have two more 
atoms than the initial ring configuration. In the contrary cases (n = even integer), 
the atomic density of the configurations is the same as the initial one. This means 
that both rotational modes (n = odd or even) result from the different nature of 
the rotational slip. However, for the sequential transformation from one lattice to 
another to he possible, the rotation operation must permit generation of new sets of 
pentagon rings. Only 4 ~ / 5  = 144' (n = 4) and n / 5  = 36' (n = 1) satisfy this 
criteria and they will be used in the following to realize the lattice transformations. 

The 4 ~ / 5  rotations (clockwise and anticlockwise) are considered as planar rota- 
tions because there is no change of atomic density in the pentagon ring configuration. 
Since metallic materials pretend to close packing, this rotational slip may result from 
the incorporation of substitutional atoms between small' atoms and large atoms in- 
side the tiling units. If this is true then the generated approximant phases may 
have different compositions. This assumption is based on the fact that most of the 
approximant phases existing in an alloy system have different compositions (for ex- 
ample, as quoted in section 3.3, the 0, phase was found in alloy AI,,Cu,Fel,,,Crl,,, 
whereas the CL phase and I: phase where discovered in .4l,,Cu,Fe,,,,Cr,,~,Si3 and 
A161,,Cu,,5Fell Cr,,Si, respectively). 

To illustrate how the atom shifts from one configuration to another, we suppose 
that the substitutional atom is located inside the prolate rhombus (see centre-left 
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d % 4.6 8: (figure 1). The approximant structures show a gliding of every WO 
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column of table 2). During rotation, this misplaced substitutional atom moves to the 
star-like unit for a new configuration. The whole operation is schematized in the 
centre-left column of table 2. 

bssible 
itation pattems 

Tabk 2. Ralalion mnditions and relational slim in the oe 

Rotational slip 

fjg$ . . . . .  
. .  .. * .. 

7 

V 
I 

I 

@ . ..  -. 
..... 

14@ . . e  . .  
.. - .. . . . .  . .  

crew rotational 
.1p 

@ .. . . . .  . .  
. .  .. * .. . . . .  . . . .  

3@ c 
.. 

. . . . .  . . . .  . . .  

gon ring. 

Leflecred screw 
otational slip 

@ ... . .  . .  
.. 

I v 

@ ... . .  . .  
. .  .. 
i f---(&J . .  . . . .  

. . .  . . . . .  . .  v 

In the 7r/5 case, the rotation may involve local stacking faults in the third dimen- 
sion of the lattice (table 2, centre-right column). The term ‘local stacking fault’ is 
introduced here because the defect is only present inside the pentagon ring. This may 
be due to the absence of two atoms lying in the star-like tiling unit (see marks ‘+’). 
The atoms occupying sites in the layer just above or below (see marks ‘A’) will then 
be able to displace themselves to fi l l  these vacancies. The atomic configuration above 
or below the ZD layer is different. For instance, if one considers the configurations of 
the 3D units as being the cluster units packing the C-phase lattice, then five atoms or 
one atom respectively are located above or below the v1 ar v, units (see table 1). Af- 
ter replacement, the v, pentagon transforms to v1 and vice versa (table 2). This leads 
to the three pentagons placed at the centre of the pentagon ring being rotated by 
?r/5 to accommodate the allowed configuration given in table 1. The whole process 
is then call ‘screw rotational slip’. 

The screw rotational slip operation is not necessarily limited to the inside of the 
pentagon ring. After rotation by 180”, it can be operated in a tiling fragment in which 
a convex pentagon is placed between a concave pentagon and a prolate rhombus as 
schematized in the right-hand column of table 2. This operation may happen when 
four atoms are simultaneously missing from the star-like unit. Thus there are two 
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symmetrical slips operating over two sides of the star-like unit This operation is 
called ‘reflected screw rotational slip’. 

4.4. Lattice transformations 

As displayed by the HREM image in figure 4, the (16,4,6,)-0, and (10,2,5,)-R 
approximant lattices share common crystallographic directions (e.g. [100]0, Il[lOO],). 
These lattices can be transformed into each other by rotational slip in a clockwise 
direction around the b-axis inside the pentagon rings of the 0, pattern (figure 5(Q- 
d)). For the sake of illustration, and to keep close to the HREM image (figure 4), 
the initial lattice of the 0, phase is separated into two parts (see broken line) in 
figure 5(a). The left-hand area remains unchanged whereas all the rings situated in 
the right-hand area undergo the rotational slip operation. This operation generates 
another set of pentagon rings between the former positions of the pentagon rings. A 
substructure of the 0, phase is obtained after the first application of the rotational 
slip operation (broken lined cell on the right-hand side of figure 5(b)) .  Then the 
rotational slip may take place again in this second set of rings (figure 5(b)).  Note 
that other rotational modes, e.g. 72‘ as given in table 1. cannot form a new set of 
pentagon rings after the first operation. This second step forms a column of R-cells 
in the area neighbouring the 0, lattice at the left-hand side (figure 5(c):  the present 
configuration is identical to the lattice pattern marked with A in the HREM image 
of figure 4 if one considers that each intense dot in the HREM image corresponds 
to the star-like unit). If these operations are repeated, then a large area of the R 
phase (as e.g. the area marked B in figure 4) is obtained (figure 5(d) ) .  The growth of 
the 0 phase is governed by the subsequent rotational slip process in the 0, lattice. 
In contrast to the lattice transformation governed hy the translational slip operation 
(section 4.2). the lattice transformation proceeding by the planar rotational slip is a 
slow process since it needs two steps to form a column of R cells. 

S S Kang and J M Dubois 

Figure 4. HREM image showing the coex1s1cncc of three orthorhombic phases: 01, R 
and E. 

The formation of the R phase is, however, not the last state of transformation 
achieved by rotational slip. For instance, this may he due to the ordering system of 
the substitutional atoms which repeat every five different positions in the star-like unit 
(see figure 5(d) ) .  If one continues the same slip operation in this 0-phase lattice, an 
infinite series of orthorhombic approximant phases, for example the B-face centred 
orthorhombic phase schematized in figure 5(e), will be generated. These approximant 
phases are commensurate structures. A simple sublattice (without a pentagon ring, 
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here the 'p phase, (4,2,)-type approximant) is formed with an orthorhombic unit 
cell as shown in figure 5(f). This simple approximant phase is stable with respect 
to rotational slip that can only be operated when the pentagonal rings are present. 
Nevertheless, the pphase lattice can be transformed back to the C-phase lattice if 
the translational slip operation mentioned in the first example (figure 1) is applied. 
The area D in figure 4 shows the occurrence of such a case. 

Fguw 5. (a)-(d) The lattice transformation procw operaled by the clockwise rotational 
slip from the 0) lattice to the Q lattice. (e), (f) nvo Commensurate SlNCtUreS wilh $0- 
phase sublattices. (9) Coexistence of the $0-phase lattice and rhe (6,2,2,)-approximant 
lattice oblained from the symmetrical rolalional slip operated a t  lhe centre of lhe Q cells 
(see (d) ) ,  (h) A large face-centred orthorhombic mmmensurale smclure obtained from 
the anticlockwise rotational slip with lhe (6,2,2,) sublattice. The basal axis (broken 
lines) is [001]-01. 

Each approximant phase has a substructure as shown in figures 5(a)  and ( b )  
except the simple-type approximant structures which have no pentagon rings, e.g. the 
(4,2,)-type structures (figure 5(f)). 
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The commensurate structure is not necessarily formed if the rotational slip opera- 
tion is operating symmetrically in the R lattice with basal axis marked g) in figure 5(d) 
placed at position c/2 where c is the cell parameter of the R phase. The formation 
of both 9 or C phases rejects the foreign atoms (figure 5@))  causing a change in 
stoichiometry and forming another orthorhombic (6,2,2,)-type approximant in the 
same sample. 

Through anticlockwise rotation, another infinite series of approximant phases is 
also formed. However, this time the sublattice of the commensurate structure is the 
(6,2,2,)-type appmximant (figure 5(h)). 

For each independent axis chosen lor each large approximant phase, the rotational 
slip process always gives an infinite number of different approximant phases with a 
more simple lattice produced inside the large approximant arrays. The generated 
lattices are not limited to only the orthorhombic structures. A series of monoclinic 
lattices can also be obtained if the basal axis is [ lO1]-Ol.  

Each lattice formation has its own growth rate because of the variation of unit-cell 
surface. For example, the 01-R transformation is faster than the 0- transformation. 

The presence of area C in the HREM image shown in  figure 4 demonstrates 
that the 0,4 lattice transformation can also proceed along the [101]-01 direction. 
We have mentioned before that in this direction a series of monoclinic cells will be 
obtained if the planar slip operation is applicd. Indeed, the 0,-R transformation 
along this direction can involve another mode of mechanism: the screw rotational 
slip. 

Feure 6 (U) Formation of n cells (righl-hand side) by a 3 6 O  scm rotational slip (left 
and centre-left) followed by reflected screw mtalional slip (centre-"ghi) in the 01 laltice 
along the [lOl]-Q direction. (b) Formation of distorted large prolate rhombuses by 
reflected XICW relational slip. 

Figure 6(a) shows the corresponding 0,-R transformation process. The lattice 
transformation is generated by screw rotation by an angle of 36" in the upper part of 
figure 6(a)  (left-hand side). Meanwhile the bottom part of the figure is provisionally 
kept unchanged for clarity. After two steps, the reflected screw rotation is applied 
to the bottom part of the Same figure (middle-right side of figure 6(u)). During this 
lattice transformation, a column of perfect prolate rhombuses (obtained from the 
connection of pentagon rings) which can Usually be drawn out in the HREM image is 
obtained (figure 6(a) middle-right lattice). 

Another example concerning only the reflected screw slip is presented in fig- 
ure 6(b). The lattice transformation is generated by the slip in the upper part of 
figure 6(b) (left-hand side). The generated part of the large distorted prolate rhom- 
bus (right-hand side of figure 6(b)) coincides with the pattern schcmatized on the 
HREM image of figure 3(b). This distorted prolate rhombus has two different edge 
lengths. 
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4.5. Latrice transformation between approximant and quasiciystalr 

4.5.1. Irrational twinning. The large pentagon with edge length r 3 d A  which is usually 
observed in the HREM image cannot be generated by the rotational slip operated in 
the usual way as illustrated in the above examples. It is also unrealizable by the 
classical lattice twinning reported so far and concerning only the rational plane of the 
periodic lattice [19]. However, we show in this section that a large pentagon can be 
obtained by a simple ‘irrational twinning operation’. 

Figure 7. (a) Irrational twinning performed in the 0, 
lattice with the twin plane (101/&) being - la0  
and +ISo off the (001)-01 direction at the left- 
and righl-hand sides respeclively. (6)  One dimen- 
sional IatIice as generated from a periodic sequence 
of irrational twinnings applied in the 0, lattice. 

The concept of irrational twinning is the same as classical lattice twinning except 
that now the lattice twinning has an irrational twin plane cut through the periodic 
lattice. Since the sublattice of the approximant phase has a pentagonal decoration, 
some of the planes thus generated, called the irrational atomic planes, are positioned 
in irrational directions. This makes the twinning tealizable in these irrational atomic 
planes. Figure 7(a)  shows two examples of irrational lattice twinning operations 
applied U) the (16,4,6p) lattice. One has an angle of -18’ (fugure 7(a)  left-hand 
side) and another + 1 8 O  (figure 7(a) right-hand side) apart from the [lOO]-O, axis. 
Thetwinplaneis(lOL),, with L =  ~ t a n l S ~ = c t a n 1 8 ~ / t a n 3 6 ~  = ]/&where 
Q and c are unit cell parameters of the 0, phase. Note that there is only one unit-cell 
vertex placed on this twin plane. 

4.5.2. Formation of one-dimensional and decagonal quasiciystalr. The description for 
the formation of ID or ZD quasicrystals begins with the (16,4,6,) lattice. We select 
this lattice as the starting field because it is a close approximant of the decagonal 
quasicrystal [U] .  However, the present concept can be applied in any approximant 
lattice, except that the tiling pattern will be different. The decagonal pattem obtained 
by irrational twinning is not universal since there are different starting lattices that 
may be considered although all of them yield tenfold symmetry. 

When the periodic sequence of irrational twinning occurs in this lattice, the lattice 
so obtained is 1D quasiperiodic lattice. It forms an aperiodic packing parallel to the 
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Figure 8. (a) lbnslalional slip applied in the 01 laltice along the [I011 direclion. The 
upper pan of the lattice (lopleft pallern) shills a dislance of  r d A  (where d A  is lhe edge 
length) and lomu the mnfiguralion given in the top right. A larger view of the former 
patlem is given a1 lhe bottom. (b) Tenfold irrational lwinnning showing an aperiodic 
pattern i n  the central area. The dark-lined pattern is obtained fmm Ihe connection of 
pentagon rings. 

twin plane but periodical along the perpendicular direction (figure 7(b)). A row of 
large pentagons is obtained. 

If one part of the initial 0, lattice (top-left pattern of figure S(u)) is slipped along 
the [ l o l l  direction, the lattice will be transformed to the pattern schematized in the 
top right-hand side of figure 8(u). The bottom pattern of figure S(0 )  shows the same 
configuration extended to a large area. The 0, lattice now has two orientations, the 
c-axis of which are separated by an angle of 72'. The parallel periodic sequence of 
irrational twinning cannot be carried out due to the different orientation of the twin 
plane (see broken lines laid out in the bottom pattern of figure 8(u)). This operation 
can lead to tenfold symmetry. Figure 8(b) shows the resulting pattern. In the central 
area and near the twin plane, the lattice is aperiodic and perfectly ordered, whereas 
the area between the twin planes is still that of the 0, phase. 

5. Conclusion 

The two-dimensional approximant patterns perpendicular to the pseudo tenfold 
axis were obtained from the HREM images as a result of the presence of recog- 
nizable pentagon units. The space groups of two orthorhombic phases found 
in A18,,,.,5Mn13,75Ni5,5 and A1,,Cu,Fe1,,,Crl,,,Si, were sorted out accordingly as 
BbmZ1 (a  = 24 A b = 12.4 8, and c = 32.7 A) and P 2 m c  (a  = 23.6 
b = 12.3 8, and c = 20 A) respectively. Three kinds of crystallographic re- 
arrangement mechanisms were proposed to explain the two-dimensional lattice trans- 
formations between approximant arrays and approximant/aperiodic arrays. The first 
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transformation is a linear translational slip. This slip distorts the initial lattice without 
changing the area of the unit cells. The second transformation can be divided into 
three types: rotational slip, screw rotational slip (rotational slip plus a displacement 
in the pseudo tenfold direction) and rellected rotational slip. The first two concern 
the rotation of three pentagons located inside a pentagon ring formed by nine pen- 
tagons around the rotation axis (the pseudo tenfold axis of the approximants) with 
a rotation angle of n?r/5, n = integer. IThe third type is also a screw rotational 
slip with a rotation angle of 180'. This rotation is restricted to a tiling fragment 
in which a convex pentagon is placed between a concave pentagon and a prolate 
rhombus. These operations can be carried out along any axis of the periodic approx- 
imant lattice to generate an infinite number of approximant phases. However, the 
aperiodic tiling in either one dimension or two dimensions cannot be generated by a 
simple slip applied on a periodic lattice. The formation of these quasicrystals involves 
the third mechanism, irrational twinning with a twin plane on an irrational atomic 
plane. A periodic sequence of irrational twinning in a periodic lattice generates the 
one-dimensional aperiodic lattice. In contrast, a tenfold irrational twinning generates 
the two-dimensional quasiperiodic lattice. 
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